Preliminary communication

Synthesis of novel polymetallated cyclopentadienes

I.M. PRIBYTKOVA, A.V. KISIN, Yu.N. LUZIKOV, N.P. MAKOVEYEVA, V.N. TOROCHESHNIKOV and Yu.A. USTYNYUK

NMR Laboratory, Chemical Department, M.V. Lomonosov State University, Moscow (U.S.S.R.) (Received April 10th, 1971)

During a study of fluxional σ -cyclopentadienyl derivatives of the Group IVB elements¹⁻³ a number of polymetallated cyclopentadienes containing two, three, or four (equal or different) groups of the series Si(CH₃)₃, Ge(CH₃)₃, and Sn(CH₃)₃ (I to XI) have been synthesised.

	\square	/м(Сн ₃) ₃ [^] м'(Сн ₃) ₃	(СН ₃) ₃ М"1		1(СH ₃) ₃ 1'(СH ₃) ₃		
	М	M			М	M	М"
I	Si	Si		VII	Si	Sn	Si
II	Si	Ge		VIII	Ge	Sn	Si
III	Ge	Ge		IX	Sn	Sn	Si
IV	Si	Sn		х	Sn	Sn	Sn
V	Sn	Sn		XI		C ₅ H ₂ [Sn(CH ₃) ₃]₄★
VI	Ge	Sn					

Compounds I to IV (Table 1) were synthesised from $C_5 H_5 M(CH_3)_3$ (M = Si, Ge)** by metallating the starting compound with butyllithium and treating the mixture with $(CH_3)_3 M'Cl$ (M' = Si, Ge, Sn).

Bis(trimethylsilyl)cyclopentadiene (I).

A solution of butyllithium (1.9 N, 6.35 ml, 12.0 mmole) in ligroin was added dropwise in an argon atmosphere to a stirred solution of freshly distilled trimethylsilylcyclopentadiene (1.6 g, 11.5 mmole) in 10 ml abs. ligroin. The mixture was stirred for an hour at room temperature, trimethylchlorosilane (2.6 g, 2.4 mmole) added in an argon

****** Synthesised according to the method of Kraihanzel (for M = Si)⁴ and of Mironov (for M = Ge)⁵.

J. Organometal. Chem., 30 (1971) C57-C60

^{*}Because of the complicated low-temperature spectrum of compound XI the position of the organotin groups in this compound could not be determined.

sweep, and the resulting mixture heated for three hours at 40° . The ligroin solution was filtered, the solvent evaporated, and the residue distilled in vacuo to give bis(trimethyl-silyl)cyclopentadiene, b.p. 45° at 3 mm, yield 1.45 g (60%).

Compounds II, III, and IV were obtained in a similar way. Their constants and analyses are shown in Table 1.

Compounds $C_5 H_5 Sn(CH_3)_3 \star$ and V were obtained by metallating cyclopentadiene with diethylaminotrimethylstannane using the modified procedure of Jones and Lappert⁷.

TABLE 1

CONSTANTS AND ANALYSES OF THE COMPOUNDS I TO IV

Compound	Gross formula	Yield	B.p.	Analysis f	ound (calcd.)	
		(70)	(Crum)	c	Н	Si	Ge
I	C11H22Si2	60	80/10	62.66	10.42	26.35	
II	C ₁₁ H ₂₂ SiGe	86	31/1	(02.78) 51.96 (51.82)	(10.34) 8.76 (8.70)	(20.09)	
ш	C ₁₁ H ₂₂ Ge ₂	67	42/1	44.52	7.39		48.19 (48.51)
IV	C ₁₁ H ₂₂ SiSn	22	42/1	43.69 (43.88)	7.38 (7.37)		

Trimethylstannylcyclopentadiene.

Freshly distilled cyclopentadiene (1.98 g, 30 mmole) and diethylaminotrimethylstannane (2.36 g, 10 mmole) were placed in a distillation assembly. The mixture was maintained in a dry argon atmosphere for 0.5 hour, the resulting diethylamine and excess of cyclopentadiene removed in vacuo, and the residue distilled in vacuo. The yield of $C_5 H_5 Sn(CH_3)_3$ was 2.1 g (92%), b.p. 38° at 3 mm.

Similar reaction of the aminostannane with the respective cyclopentadienes produced the compounds VI to XI. The experimental conditions, yields, boiling points, and analyses are summarised in Table 2.

The structures of compounds I-XI have been unambiguously verified by NMR and mass spectral measurements. Their fluxional behaviour has been studied through the use of temperature-dependent ¹H and ¹³C NMR spectra. The data relative to these studies will be published shortly.

J. Organometal. Chem., 30 (1971) C57-C60

C58

^{*}NMR spectra and fluxional behaviour of $C_5H_5Sn(CH_3)_3$ have been previously reported^{2,3,6}.

2
ŝ
Г
B
×
-

SYNTHESES AND CONSTANTS OF THE COMPOUNDS V TO XI

Compound	Gross formula	Initial cyclo- pentadiene	Molar ratio of initial cyclo- nentadiene to	Reaction temperature (°C)	Reaction time (h)	Yield (%)	B.p. (°C/mm)	Analysis f	found (cale	cd.)
			aminostannane					C	Н	Sn
C ₅ H ₅ Sn(CH ₃) ₃	C ₈ H ₁₄ Sn	C ₅ H ₆	3/1	room	0.5	92	38/3 ^a	42.13	6.29	52.15
;	:	:		ŝ	c	é		(41.98)	(6.16)	(51.86)
>	C11H225n2	C ₅ H ₆	7/1	40	7	04	c/ng	(27.55)	24.0	00.83
١٨	C ₁₁ H ₂₂ GeSn	C ₅ H ₅ Ge(CH ₁) ₃	1/1.2	40	2	84	82/3	38.08	6.42	(1000)
	1	1 1 1						(38.23)	(6.42)	
NII	C ₁₄ H ₃₀ Si ₂ Sn	I	1/1.2	40	7	. 49	102/4	45.20	7.85	
						•		(45.05)	(8.10)	
VIII	C ₁₄ H ₃₀ SiGeSn	II	1/1.2	40	2	11	68/1	40.45	6.81	
								(40.25)	(1.24)	
IX	C ₁₄ H ₃₀ SiSn ₂	C ₅ H ₅ Si(CH ₃) ₃	1/2	40	2	80	84/3	36.44	6,49	
		1 1 1						(36.25)	(6.52)	
×	C ₁₄ H ₃₀ Sn ₃	>	1/1.5	100	3	86	116/3	30,31	5.41	64.90
								(30.33)	(5.45)	(64.22)
XI	C17H38Sn4	×	1/2	150	4	60	122/1	29.10	5.60	65.58
							m.p.	(28.47)	(5.34)	(66.19)
							60-61			

PRELIMINARY COMMUNICATION

J. Organometal, Chem., 30 (1971) C57-C60

^d Lit. 85/10⁸.

C60

REFERENCES

- 1 Yu.A. Ustynyuk, A.V. Kisin and O.E. Oksinoid, Zh. Obshch. Khim., 38 (1968) 391.
- 2 Yu.K. Grishin, N.M. Sergeyev and Yu.A. Ustynyuk, J. Organometal. Chem., 22 (1970) 361.
- 3 A.V. Kisin, V.A. Korenevsky, N.M. Sergeyev and Yu.A. Ustynyuk, J. Organometal. Chem., submitted for publication.
- 4 C.S. Kraihanzel and M.L. Losee, J. Amer. Chem. Soc., 90 (1968) 4701.
- 5 V.F. Mironov, T.K. Gar and L.A. Leites, Izv. Akad. Nauk SSSR, Ser. Khim., (1962) 1387.
- 6 Yu.K. Grishin, N.M. Sergeyev and Yu.A. Ustynyuk, J. Organometal Chem., submitted for publication.
- 7 K. Jones and M.F. Lappert. J. Organometal. Chem., 3 (1965) 285.
- 8 H.P. Fritz and C.G. Kreiter, J. Organometal. Chem., 1 (1964) 323.

J. Organometal. Chem., 30 (1971) C57-C60